2506/104 2507/104 ENGINEERING DRAWING June/July 2020 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING

(AIRFRAMES AND ENGINES OPTION) (AVIONICS OPTION)

MODULE I

ENGINEERING DRAWING

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet;

Non-programmable scientific calculator;

Drawing papers size A2;

Drawing instruments;

Drawing table/board.

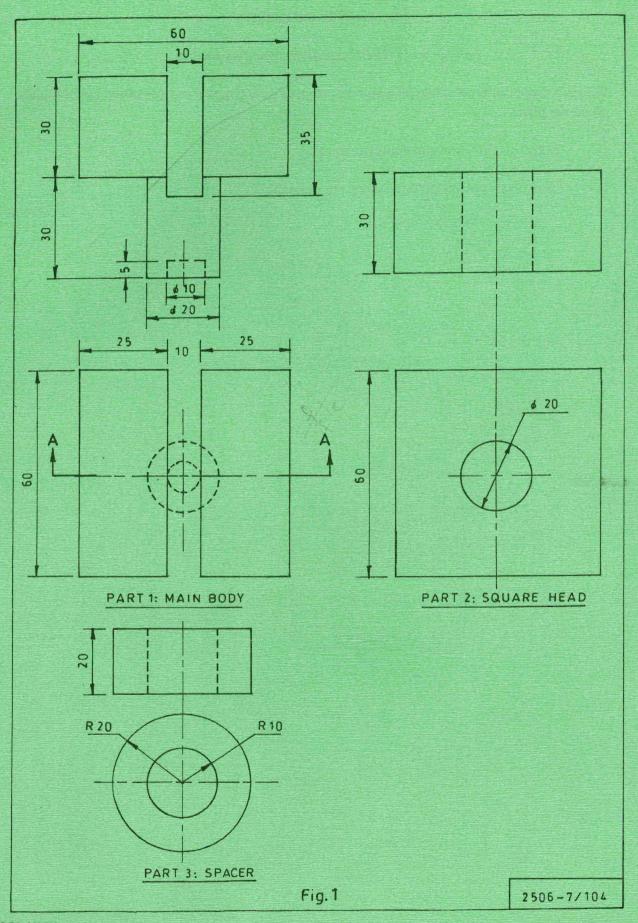
This paper consists of FIVE questions in TWO sections; A and B.

Answer question ONE in section A (compulsory) and THREE questions from section B.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 6 printed pages.


Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

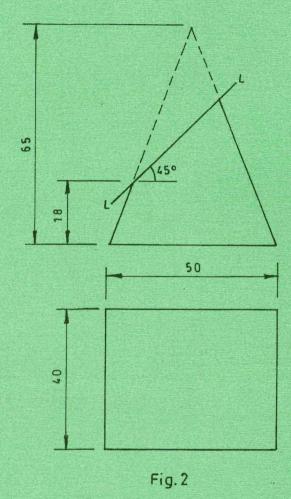
SECTION A (Compulsory) (40 marks)

- 1. Figure 1 shows details of part of an actuation valve. Assemble the parts and draw in first angle projection the following views:
 - (a) a sectional front elevation along the cutting line A-A;
 - (b) plan view.

Prepare a pats list. Assume any dimensions not given.

(40 marks)

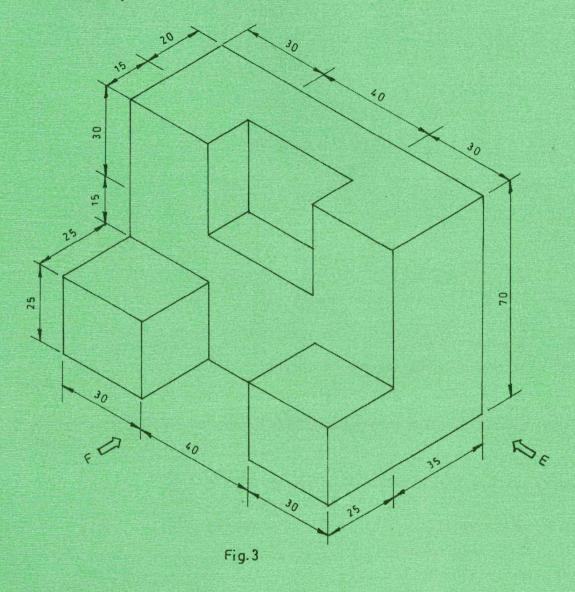
2506/104 2507/104 June/July 2020 3


Turn over

SECTION B (60 marks)

Answer any THREE questions from this section.

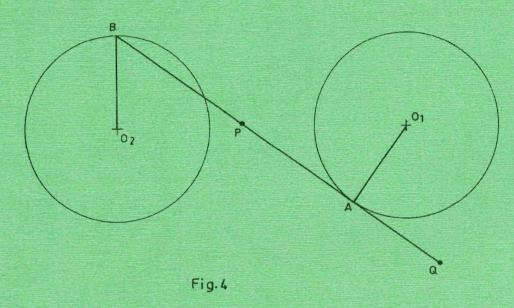
- 2. Figure 2 shows an incomplete plan and elevation of a rectangular base pyramid cut obliquely along the plane L-L.
 - (a) Copy the elevation and complete the plan.
 - (b) Draw the surface development of the pyramid.


(20 marks)

- 3. Figure 3 shows an isometric block. Using third angle projection, draw the following:
 - (a) front elevation viewed from the direction of arrow F;
 - (b) end elevation viewed from the direction of arrow E;
 - (c) plan view.

Label any six dimensions on the views.

(20 marks)


4. Figure 4 shows a four bar link mechanism with O_1 and O_2 as fixed points. The driving crank is O_1A . The distance between O_1 to $O_2 = 100$ mm. Draw the loci of points P and Q for one complete revolution of the driving crank given that point P is the midpoint of AB and

$$AB = 100 \text{ mm}$$

$$O_2B = O_1A = 30 \text{ mm}$$

$$AQ = 30 \text{ mm}$$

(20 marks)

- 5. (a) State:
 - (i) three uses of scales;
 - (ii) two ways of handling an eraser in drawing.

(5 marks)

- (b) Using single stroke vertical gothic lettering, print the numerals 1 12 without the help of instruments. (6 marks)
- (c) Make pictorial sketches of each of the following workshop tools:
 - (i) wood work chisel;
 - (ii) double ended spanner;
 - (iii) wood work mallet.

(9 marks)

THIS IS THE LAST PRINTED PAGE.