2506/202 2507/202 ELECTRONICS AND CONTROL SYSTEMS June/July 2020

Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING (AIRFRAMES AND ENGINES OPTION) (AVIONICS OPTION)

MODULE II

ELECTRONICS AND CONTROL SYSTEMS

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:
answer booklet;
mathematical tables;
non-programmable scientific calculator;
drawing instruments;

Nyquist polar curve.

This paper consists of EIGHT questions in TWO sections; A and B.

Answer **THREE** questions from section A and TWO questions from section B in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 7 printed pages and 1 insert.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A: ELECTRONICS

Answer THREE questions from this section.

1.	(a)	Define each of the following as used in semiconductor devices:						
	(a)	drift;						
	(b)	diffus	sion;					
	(c)	recon	mbination.					
				(3 marks)				
	(b)	Descr	ribe the formation of depletion layer in a P.N junction diode.	(5 marks)				
	(c)	With	the aid of V.I characteristic curve, describe the operation of a tunne	el diode.				
				(7 marks)				
	(d)		rmanium PN junction diode has a saturation current of 250 mA at 3					
			rmine the voltage to be supplied across the junction to cause a forw					
		10° A	to flow.	(5 marks)				
2.	(a)	State	(2 marks)					
	(b)	An R-C coupled amplifier has a voltage gain of 1000, lower cut off frequency f, of						
		50Hz, upper cut off frequency f ₂ of 200 kHz and a distortion of 5% without feedb						
			e the new:					
		(i)	amplifier voltage gain;					
		(ii)	lower cut off frequency f ₁ ;					
		(iii)	upper cut off frequency f ₂ .					
		(iv)	distortion.					
				(8 marks)				
	(c)	(i)	State two applications of differentiating circuits.					
		(ii)	With the aid of a circuit diagram and waveforms, explain the ope	eration of a				
			diode positive clipper circuit.	(10				
				(10 marks)				

3. (a) State three areas of applications of Liquid Crystal Display (LCDs).

(3 marks)

(b) Figure 1 shows a d.c bias circuit of a common emitter transistor amplifier.

Assuming $V_{BE} = 0.7 \text{ V}$, determine the:

- (i) base voltage, V_R;
- (ii) emitter voltage, V_E;
- (iii) emitter current, I_E;
- (iv) collector emitter voltage, V_{CF}.

(8 marks)

- (c) (i) Perform each of the following arithmetic operations in the given bases:
 - (I) $(0101)_2 + (1111)_2$;
 - (II) $(7F)_{16} + (BA)_{16}$.
 - (ii) Represent the decimal number 4096 in
 - (I) BCD code;
 - (II) excess 3 code.

(9 marks)

4. (a) Simplify the following Boolean expression using K-map:

$$F(A, B, C, D) = \Sigma(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13)$$

(b) Table 1 shows the classifications of logic families.

Table 1

Category	Number of equivalent basic logic gates on a single clip				
1	12 - 99				
2	100 - 999				
3	10,000 and above				

State the corresponding category of the logic families.

(3 marks)

(6 marks)

- (c) With the aid of a logic circuit diagram, explain the operation of an edge triggered J-K flip flop. (8 marks)
- (d) State **three** advantages of using metal oxide semiconductor (MOS) devices over Bipolar type devices. (3 marks)
- 5. (a) State three applications of shift registers.

(3 marks)

- (b) Define each of the following with respect to analogue to digital converters:
 - (i) monotonicity;
 - (ii) resolution;
 - (iii) accuracy.

(3 marks)

(c) Wit the aid of circuit diagram, explain the principle of operation of a Dynamic RAM (DRAM) memory cell. (6 marks)

(d) Figure 2 shows an electronic logic circuit.

- (i) Draw its truth table.
- (ii) Obtain the output Boolean expression.

(8 marks)

SECTION B: CONTROL SYSTEMS

Answer TWO questions from this section.

- 6. (a) Define the following with respect to control systems:
 - (i) reference variable;
 - (ii) controlled variable.

(2 marks)

- (b) State two advantages of open loop over closed loop control systems.
- (2 marks)
- (c) Figure 3 shows an R-C network. Determine its transfer function.

(6 marks)

(d) Figure 4 shows an equivalent circuit of a d.c generator. Show that its transfer function is given by.

$$\frac{E_2(s)}{E_f(s)} = \frac{KrR_2}{(R_f + SL_f)(Ra + R_2 + SLa + SL_2)}$$

where Kr = generator back e.m.f constant.

Fig. 4

(10 marks)

- 7. (a) Define each of the following with respect to system performance:
 - (i) damping ratio;
 - (ii) percentage overshoot;
 - (iii) time constant.

(3 marks)

(b) A second order system is described by the differential equation

$$1.5\frac{d^2\theta_o}{dt^2} + 3\frac{d\theta_o}{dt} + 6\theta_o = 6\theta_i; \qquad 1.55^{\circ} + 35^{\circ} + 35^{\circ}$$

Determine the:

- (i) percentage overshoot of the response;
- (ii) time taken to reach this overshoot when the system is subjected to a unit step input.

(6 marks)

(c) Table 2 shows the open loop frequency response of a system.

Table 2

ω rad/s	2	3	4	5	6	8	10	30
Gain	2.8	1.9	1.3	0.9	0.68	0.4	0.26	0.12
ϕ degrees	- 120	- 130	-140	-149	- 157	- 170	- 180	- 200

- (i) Plot the Nyquist diagram and determine the stability margins.
- (ii) Comment on the stability of the system.

(11 marks)

- 8. (a) Define each of the following with respect to signal flow graphs:
 - (i) forward path;
 - (ii) sink node;
 - (iii) source node.

(3 marks)

(b) Figure 5 shows a signal flow graph for a control system. Determine the system gain using Mason's formula. (10 marks)

- (c) (i) State the three types of stepper motors.
 - (ii) State one practical application areas of stepper motors.
 - (iii) Draw a labelled schematic diagram of a stepper motor.

(7 marks)

THIS IS THE LAST PRINTED PAGE.