2507/305
ELECTROMAGNETIC FIELD THEORY
June/July 2018
Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING (AVIONICS OPTION)

ELECTROMAGNETIC FIELD THEORY

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:
Answer booklet;
Non-programmable scientific calculator.
This paper consists of EIGHT questions.
Answer FIVE questions in the answer booklet provided.
All questions carry equal marks.
Maximum marks for each part of a question are as shown.
Candidates should answer the questions in English.

Take: Permittivity of free space, $\varepsilon_0 = 8.854 \times 10^{-12} F/M$ Permeability of free space, $\mu_0 = 4\pi \times 10^{-7} H/M$ Sped of light, $C = 3 \times 10^8 m/s$

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

- 1. (a) (i) State Coulombs Law.
 - (ii) Two charges $q_1 = 5 \times 10^{-8} C$ and $q_2 = -3 \times 10^{-8} C$ are located 16 cm apart in free space. Determine the point between the two charges where the electric potential is zero. (4 marks)
 - (b) (i) Define the following with respect to electrostatics:
 - I. electric field;
 - II. electric field intensity.
 - (ii) A point charge $Q = 10^{-9}C$ is placed at a point in free space. Determine the:
 - I. electric field intensity at a point 5 cm away from the charge;
 - II. difference in potential between two points 20 cm and 10 cm away from the charge. (8 marks)
 - (c) Write down Maxwell's equations in both word statement and integral form that describe the space and time dependence of the electric and magnetic fields in a medium.

(8 marks)

2. (a) Distinguish between 'lossy' and 'lossless' media citing one example of each.

(4 marks)

- (b) (i) Describe displacement current as used in electromagnetics.
 - (ii) The conduction current density in a lossy dielectric is given by $Jc = 0.02 \sin 10^9 t \ A/m^2$. The conductivity of the dielectric $\sigma = 1 \ K \ mho/m$ and the relative permittivity, $\varepsilon_r = 6.5$. Determine the displacement current density, Jd. (9 marks)
- (c) (i) Define skin depth with respect to electromagnetic waves.
 - (ii) An electromagnetic wave travels through a conducting medium. Plot the variation of amplitude versus distance. (3 marks)
- (d) (i) Define intrinsic impedance.
 - (ii) Determine the intrinsic impedance of free space. (4 marks)
- 3. (a) State Gaus law of electrostatics. (1 mark)

(b)	A long straight circular conductor of diameter 2 mm carrying a current of 250 A is placed in air.		
	(i)	Draw a curve showing the variation of the magnetic flux density, β conductor surface outwards.	from the
	(ii) '	Determine the magnetic flux density at a perpendicular distance of 5 the conductor.	cm from (7 marks)
(c)	A transmission line has the following parameters:		
	$R = 84\Omega/km, G = 10^{-6} mho/km, L = 0.01 H/km;$		
	$C = 0.061 \mu\text{F/km}$ and frequency $f = 1,000 \text{Hz}$.		
	Determine the:		
	(i)	characteristic impedance;	
	(ii)	propagation constant;	
	(iii)	velocity of propagation.	(12 marks)
(a)	List t	three properties of electromagnetic waves. (3 marks)	
(b)	(i)	(i) Draw a waveform of an electromagnetic wave indicating the following:	
		I. wavelength; II. amplitude.	
	(ii)	Describe 'uniform plane wave'.	(8 marks)
(c)	An electromagnetic wave propagates through aluminium, at a frequency of 1.6 MHz. The conductivity of aluminium is 38.2 MS/m and it's electron mobility is $\mu=1$.		
	Determine the:		
	(i)	skin depth;	
	(ii)	propagation constant;	
	(iii)	wave velocity.	(9 marks)
(a)	State the following with respect to electromagnetic fields:		
	(i)	Biot -savart law;	
	(ii)	Ampere's law.	(2 marks)

5.

(b) The electric field of an electromagnetic wave has an amplitude of, $E_0 = 120 \, N/C$ and a frequency of $f = 50 \, \text{MHz}$.

Determine the:

- (i) magnetic field strength;
- (ii) angular frequency of the electric field;
- (iii) wavelength of the electromagnetic wave.

(6 marks)

- (c) Describe the following:
 - (i) poynting theorem;
 - (ii) electromagnetic shielding.

(6 marks)

- (d) A region in space has magnetic field of $1.0 \times 10^{-2} T$ and electric field of $2.0 \times 10^{6} V/m$. Determine the:
 - (i) electric field energy density;
 - (ii) magnetic field energy density;
 - (iii) total energy density.

(6 marks)

- 6. (a) Define each of the following, stating their units:
 - (i) magnetic field strength (H);
 - (ii) magnetic flux density (B).

(4 marks)

- (b) Explain the following terms with respect to electromagnetic waves:
 - (i) phase velocity;
 - (ii) propagation constant.

(4 marks)

(c) With the aid of a B - H curve, describe the hysteresis loop of magnetization.

(10 marks)

(d) State two applications of electromagnetic waves.

(2 marks)

- 7. (a) State three factors that affect the magnitude of the electrostatic force between two point charges. (3 marks)
 - (b) An infinity long straight wire carries a current I = 20 A. Determine the distance from the wire at which the magnetic field intensity H = 1 A/M. (3 marks)
 - (c) Using Maxwell's curl equation, show that the poynting theorem for power flowing out of a closed surface, S, is given by:

$$\oint_{s} P.ds = -\int \sigma E^{2}.dv - \frac{\partial}{\partial t} \int \frac{1}{2} \varepsilon E^{2}.dv - \frac{\partial}{\partial t} \int \frac{1}{2} \mu H^{2}.dv.$$
 (8 marks)

- (d) Draw the radiation patterns of the following antennae:
 - (i) half-wave dipole;
 - (ii) Yagi-uda.

(6 marks)

- 8. (a) Define the following with respect to antennae:
 - (i) Hertzian dipole;
 - (ii) directivity.

(2 marks)

- (b) A magnetic field strength of $5\mu A/M$ is detected at a point $\theta = \frac{\pi}{2}$, 2 km from an antenna in air. Neglecting the ohmic losses, determine the power transmitted by the antenna if it is a:
 - (i) Hertzian dipole of length $\frac{\lambda}{25}$;
 - (ii) half wave dipole.

(9 marks)

(c) Two charges, $Q_1 = 5\mu C$ and $Q_2 = 6\mu C$ are located at (0,4,0) and (3,0,0) respectively. Determine the electric field intensity at (0,0,5) metres due to the two charges.

(9 marks)

THIS IS THE LAST PRINTED PAGE.