2207/303
COMMUNICATION AND NAVIGATION SYSTEMS
June/July 2019
Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING (AVIONICS) (COMMUNICATION AND NAVIGATION OPTION)

COMMUNICATION AND NAVIGATION SYSTEMS

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Non-programmable scientific calculator;
Answer booklet.

Answer any FIVE of the EIGHT questions in the answer booklet provided.
All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 6 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

- 1. (a) (i) List two functions of the r.f. stage of a radio receiver.
 - (ii) With the aid of a circuit diagram, describe the operation of a parallel i.f. trap in a radio receiver.

(6 marks)

(b) Table 1 shows data for an AM receiver selectivity:

Frequency (kHz)	500	600	700	800	900	1000	1100	1200	1300
Output voltage (mV)	0	5.5	15	32.5	46	40	15	5	0.5

- (i) Plot the response curve.
- (ii) Determine the:
 - (I) resonant frequency;
 - (II) output voltage at 1070 kHz.

(7 marks)

- (c) An FM radio receiver is tuned to a signal voltage of $6\cos 196\pi \times 10^6 t$ volts and has a local oscillator whose signal voltage is $4\cos 217.4\pi \times 10^6 t$ volts. Determine the:
 - (i) intermediate frequency;
 - (ii) image signal frequency.

(7 marks)

- 2. (a) Define each of the following with respect to Pulse Code Modulation (PCM):
 - (i) quantisation noise;
 - (ii) resolution;
 - (iii) dynamic range.

(3 marks)

- (b) (i) With the aid of a response curve, explain non-linear quantisation in PCM).
 - (ii) A data error detection system uses even parity for the data words 0000₂ to 1111₂. Draw the truth table showing the parity bits.

(10 marks)

- (c) An a.f. signal $6\sin 6\pi \times 10^6 t$ volts, is transmitted by PCM using 512 coding levels. Determine the:
 - (i) Nyquist sampling rate;
 - (ii) number of bits used;
 - (iii) signal-to-quantisation noise ratio in dB.

(7 marks)

- (a) (i) List two causes of signal attenuation in waveguides.
 - (ii) Figure 1 shows a diagram of a directional coupler used to link signals between two waveguides. Explain its operation. (5 marks)

- (b) With the aid of a labelled block diagram, describe the operation of a parametric amplifier. (7 marks)
- (c) A rectangular waveguide with the dimensions 3 cm \times 4.5 cm, operates at 7.5 GHz when carrying the TM_{1,1} mode. Determine the:
 - (i) cut-off wavelength;
 - (ii) waveguide impedance;
 - (iii) group velocity.

(8 marks)

4.	(a)	(i)	List two requirements of a radio transmitter.	
		(ii)	Draw a labelled block diagram of a direct FM transmitter and description.	be its
				(8 marks)
	(b)	induc	nsistor reactance modulator uses an oscillator whose capacitance is 12 stance is 3 nH. When a modulating signal of 15 MHz is applied, the efficience increases by 3 pF. Determine the:	
		(i)	carrier frequency;	
		(ii)	frequency deviation of the FM signal;	
		(iii)	modulation index.	
		,, y		(7 marks)
	(c)		uble sideband AM system radiates a power, Pout, when a carrier wave of modulated to a depth, m. Determine the expression for Pout in terms on.	
(5)	(a)	Defin	e each of the following with respect to radar systems;	
		(i)	duty cycle;	
		(ii)	range resolution;	
		(iii)	maximum unambiguous range.	
				(3 marks)
	(b)	Desci	ribe each of the following radar systems:	
		(i)	surveillance radar;	
		(ii)	precision approach radar.	
				(6 marks)
	(c)	(i)	A 9 GHz radar system uses a parabolic dish antenna of 2 m mouth d and 65% efficiency to radiate 200 kW towards a target. The target c sectional area is 4 m ² and the system operates over a bandwidth of 5 with a noise figure of 6 dB. Determine the radar range.	ross-
		(ii)	A pulsed radar system has a pulse repetition time of 750 μ S and each a width of 5 μ S. Determine the:	h pulse has
			(I) maximum unambiguous range;	
			(II) duty cycle.	
				(8 marks)

(d)

(3 marks)

Explain blind speed as applied to radar systems.

- Define each of the following as applied to stimulated emission devices: 6. (a) (i) (I) electroluminance; (II) modulation. With the aid of a labelled diagram, describe the operation of a ruby solid laser. (ii) (10 marks) An optical fibre has a core whose refractive index is 1.78 and cladding whose refractive (b) index is 1.68. Determine the: (i) numerical aperture; (ii) critical angle; (iii) maximum angle of incidence. (6 marks) (c) With the aid of a refractive index profile and light raypath diagram, describe a step (4 marks) index multi-mode optical fibre. List two performance specifications of a space satellite. (a) (i) (ii) Explain each of the following with respect to an earth satellite station antenna: (I) step tracking; (II) program tracking. (8 marks)
 - (b) With the aid of a labelled block diagram, describe attitude and orbit control of a satellite. (7 marks)
 - (c) An 8 GHz gosynchronous satellite radiates 500 W using a parabolic dish antenna whose gain is 45 dB with an efficiency of 70%. Determine the gain of the receiving antenna if the minimum received power is 6 μ W. (5 marks)

- 8.
- (a) (i) List two areas of application of a microwave antenna.
 - (ii) Table 2 shows data for an antenna array:

Table 2

Frequency (MHz)	5	10	15	20	25	30	35	40
Field strength $\left(\frac{mV}{m}\right)$	6	32	55	70	61	40	8	2

- (I) Plot the response curve.
- (II) Determine the antenna bandwidth.

(7 marks)

- (b) With the aid of a labelled diagram, describe the operation of a 4-element end-fire array. (7 marks)
- (c) A 6-dipole broadside array radiates 2 kW at 45 MHz. The signal is received at 140 km away through a path whose attenuation is 35 dB. Determine the:
 - (i) power flux density at the receive point;
 - (ii) power received by an antenna whose effective aperture is 18 m².

(6 marks)

PE GE 2 4 11 1

THIS IS THE LAST PRINTED PAGE.