2506/202 2507/202

ELECTRONICS AND CONTROL SYSTEMS

Oct. /Nov. 2019 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING (AIRFRAMES AND ENGINES OPTION) (AVIONICS OPTION)

MODULE II

ELECTRONICS AND CONTROL SYSTEMS

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

answer booklet;

non-programmable scientific calculator;

Log-linear graph paper.

This paper consists of EIGHT questions in TWO sections; A and B.

Answer THREE questions from section A and TWO questions from section B in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 7 printed pages and 1 insert.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A: ELECTRONICS

Answer THREE questions from this section.

1. (a) Differentiate between intrinsic and extrinsic semiconductors.

(2 marks)

(b) With the aid of a V-I characteristic curve explain the operation of a zener-diode.

(7 marks)

(c) Figure 1 shows a common-emitter silicon transistor amplifier circuit diagram using a fixed-bias.

The transistor is operated at $I_C = 1$ mA, $V_{CE} = 4V$. Determine the:

- (i) supply voltage, V_{CC};
- (ii) value of base resistor, R_B.

(7 marks)

- (d) A two-stage common-emitter RC coupled amplifier uses two similar, transistors whose h-parameter and internal capacitances are $h_{fe} = 600$, hie = $10 \text{ k}\Omega$, $C_{bc} = 2.5 \text{ pF}$ and $C_{be} = 9 \text{ PF}$. The coupling capacitor is $0.5 \mu\text{F}$ and the load resistance is $10 \text{ k}\Omega$. Determine the:
 - (i) mid-frequency gain of the first stage;
 - (ii) lower cut-off frequency.

(4 marks)

- With the aid of a circuit diagram, describe the operation of a half-bridge 2. (a) (i) controlled inverter.
 - (ii) State two areas of application of inverters.

(8 marks)

(b) Figure 2 shows a circuit diagram of a Colpitt's oscillator.

Determine the:

- (i) frequency of oscillation;
- (ii) feedback factor;
- minimum gain. (iii)

(8 marks)

- (c) (i) Distinguish between monostable and bistable multivibrators.
 - (ii) State two merits of using LEDs as displays.

(4 marks)

- 3. Convert the decimal number 43 into: (a)
 - (i) octal;
 - (ii) excess - 3 code;
 - (iii) binary.

(6 marks)

(b) Prove the following identity using Boolean algebra: $A \oplus B \oplus AB = A + B$

(6 marks)

(c) Table 1 shows the truth table for a logic circuit.

Table 1

	Inputs			Output	
Α	В	C	D	Y	
0	0	0	0	0	
0	0	0	1	0 0 0 0 0	
0	0	1	0		
0	0	1 ,-	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1	1	
1	0	0	0	1	
1	0	0	1	1	
1	0	1	0	x x x	
1	0	1	1		
1	1	0	0		
1	1	0	1 .	X	
1	1	1	0	X	
1	1	1	1	Х	

- (i) Using a K-map, derive the minimum logic expression for Y.
- (ii) Implement Y using NAND gates only.

(8 marks)

- 4. (a) Define each of the following with respect to logic gates:
 - (i) fan-out;
 - (ii) power dissipation.

(2 marks)

(b) State two merits of Emitter-Coupled logic (ECL) gates.

(2 marks)

- (c) An asynchronous counter counts from 0 to 12.
 - (i) Determine the number of flip-flops required to implement it;
 - (ii) Draw the logic circuit diagram of the counter, using JK flip-flop.

(7 marks)

	(d)	(i) Draw a circuit diagram of a CMOS NAND gate and describe its operation.			
		(ii) State three advantages of CMOS gates over TTL gates.	(9 marks)		
5. (a)		(i) Draw a truth table of a binary full-adder.			
) Realise the full adder circuit using:			
		(I) 3 to 8 decoder and OR-gates; (II) 4 x 1 multiplexers.	(10 marks)		
	(b)	Define each of the following with respect to computer memories:			
		(i) cache;			
		(ii) access time.	(2 marks)		
	(c)	(c) (i) A microcomputer requires 32k X 8 RAM memory. This is implem 8k X 8 RAM chips. Determine the:			
		(I) number of chips required; (II) number of address lines for each 8k X 8 chips.			
		(ii) Draw a schematic block diagram for the implementation of the me	emory in c(i). (8 marks)		
		SECTION B: CONTROL SYSTEMS			
		Answer TWO questions from this section.			
6. (a)		Define each for the following with respect to control systems:			
		(i) control action; (ii) feedback; (iii) disturbance.			

(3 marks)

(b) Figure 3 shows a block diagram of a control system.

- (i) Draw a signal flow graph for the block diagram.
- (ii) Use Mason's gain formula to determine the transfer function. (14 marks)
- (c) State three effects of a phase-lead compensation control network on a system.

 (3 marks)
- 7. (a) State three reasons why Bode plots are preferred in system analysis to Nyquist plots. (3 marks)
 - (b) Outline the procedure for obtaining the Bode plot of a given transfer function. (5 marks)
 - (c) Using asymptotic approximations, plot the Bode diagram for the following transfer function:

$$G(S) = \frac{10}{S(1+0.4S)(1+0.1S)}$$

- (ii) From the Bode plot in c(i), obtain the:
 - (I) gain margin;
 - (II) phase margin.

(12 marks)

8.

(b) The open-loop transfer function of a unity feedback system is given by:

$$G(s) = \frac{0.382k}{S(1+0.1S)(1+0.06S)}$$

Using the Routh array, determine the limiting value of K for the system to be stable.

(6 marks)

- (c) (i) Draw analogue computing symbols for each of the following:
 - (I) integrator;
 - (II) summer.
 - (ii) State two merits of analogue computer simulation in control system design.

 (4 marks)
- (d) A unity feedback control system has an open loop transfer function given by:

$$G(s) = \frac{1}{S(S+1)(S+2)}$$

Draw an analogue computer simulation diagram for the closed-loop system.

(8 marks)

THIS IS THE LAST PRINTED PAGE.

