2506/202 2507/202 ELECTRONICS AND CONTROL SYSTEMS June/July 2019 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL.

DIPLOMA IN AERONAUTICAL ENGINEERING (AIRFRAMES AND ENGINES OPTION) (AVIONICS OPTION)

MODULE II

ELECTRONICS AND CONTROL SYSTEMS

3 hours

INSTRUCTIONS TO CANDIDATES

This paper consists of **EIGHT** questions in **TWO** sections, **A** and **B**.

Answer **THREE** questions from section **A** and **TWO** questions from section **B** in the answer booklet provided.

All questions carry equal marks.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

This paper consists of 7 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A: ELECTRONICS TECHNOLOGY

Answer THREE questions from this section.

1.	(a)	Distinguish between forward biasing and reverse biasing with respect to semi conducto diodes. (2 marks				
	(b)	(i)	State two advantages of full-wave bridge rectifiers over centre-tapp rectifiers.	ed full-wave		
		(ii)	With the aid of a diagram, describe the operation of a centre-tapped rectifier.	full-wave (10 marks		
	(c)	rectif	N junction diode having internal resistance (r) of 20 Ω is used for half fication. The applied voltage, $V = 50 \sin \omega t$ and load resistance $R_L =$ rmine the:			
		(i)	maximum current (I_m) ;			
		(ii)	direct current I_{dc} ;			
		(iii)	root mean square current (I_{rms}) ;			
		(iv)	d.c output voltage.	(8 marks		
2.	(a)	List t	two applications of Light Emitting Diodes (LEDs).	(2 marks		
	(b)	b) Draw the symbols of the following devices:				
		(i)	silicon controlled rectifier;			
		(ii)	LED;			
		(iii)	varactor diode.	(6 marks		
	(c)	State	two classes of power amplifiers with respect to their mode of operation	on. (2 marks		
	(d)	and in	mplifier has an open circuit voltage gain of 1,000, an output resistance nput resistance of 7 K Ω . It is supplied from a signal source of e.m.f 1 internal resistance of 3 K Ω . The amplifier feeds a load of 35 Ω .			
		(i)	sketch the equivalent circuit for the amplifier;			
		(ii)	Determine the:			
			I. magnitude of the input voltage;			
			II. magnitude of the output voltage.	(10 marks		

3. (a) State three merits of sinusoidal oscillators.

- (3 marks)
- (b) With the aid of a diagram, describe the construction of a colpitt's oscillator.

(7 marks)

- (c) State **three** merits of common emitter configuration with respect to bipolar junction transistors (BJTs). (3 marks)
- (d) Figure 1 shows a PNP transistor. The zero signal base current is 20 μ A and $\beta = 50$.
 - (i) Determine the quiescent (Q) point;
 - (ii) draw the load line.

(7 marks)

Fig.1

- 4. (a) Define the following with respect to memories:
 - (i) access time;
 - (ii) memory cell.

(2 marks)

- (b) Tables I, II and III show truth tables for different logic gates:
 - (i) identify the logic gates;
 - (ii) draw the symbols in (i);
 - (iii) write the Boolean expressions for the gates in (i).

(9 marks)

Table I

INP	UTS	OUTPUT	
A	В	Y	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

Table II

INP	UTS	OUTPUT
A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

Table III

INP	UTS	OUTPUT
Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

(c) With the aid of a logic circuit diagram, describe the operation of a clocked J-K flip-flop.

(9 marks)

- 5. (a) Convert the following:
 - (i) 27.25_{10} into binary;
 - (ii) 64.075₁₀ into octal;
 - (iii) 4 AF.9₁₆ into octal.

(9 marks)

- (b) Write the Boolean equivalence of the following:
 - (i) A.1 = ;
 - (ii) A + 1 =;
 - (iii) A + AB = (3 marks)
- (c) Add 37₁₀ and 49₁₀ in excess 3 code. (4 marks)
- (d) Draw a logic circuit of a 2 to 4 decoder. (4 marks)

SECTION B: CONTROL SYSTEMS

Answer TWO questions from this section

6. (a) Define the following:

(iii)

- (i) settling time;
- (ii) delay time;

peak time.

- (b) Draw a 2nd order systems response curve showing the following:
 - (i) overshoot;
 - (ii) rise time;
 - (iii) peak time.

(c) A unity negative feedback control system has a forward transfer function:

$$G_{(s)} = \frac{K}{(S+a_1)(S+a_2)}$$

- (i) draw the block diagram of the system;
- (ii) determine the closed loop transfer function.

(6 marks)

(3 marks)

(7 marks)

(d) draw a three-input summer operational amplifier circuit.

(4 marks)

7. (a) State Routh's stability criterion.

- (2 marks)
- (b) The open loop transfer function of a control system is given by:

$$G_{(s)} = \frac{K}{S(S^2 + S + 1)(S + 4)}$$

The system has a unity feedback. Determine the characteristic equation. (4 marks)

(c) A second order system is describe by the differential equation:

$$3\frac{d^2\theta_0}{dt^2} + 6\frac{d\theta_0}{dt} = 12 E$$
. Where $E = (\theta_i - \theta_0)$.

Determine the:

- (i) undamped natural frequency;
- (ii) damping factor;
- (iii) percentage overshoot;
- (iv) time taken to reach the overshoot.

(8 marks)

(6 marks)

- (d) With the aid of a diagram, describe components of a servo system.
- 8. (a) State three advantages of the bode plots over polar plots. (3 marks)
 - (b) Figure 2 shows an RLC circuit having a 150 Ω resistance, 0.06 H inductor and a 67 μ F capacitor.

Determine the:

- (i) transfer function;
- (ii) resonant frequency.

(6 marks)

Fig. 2

(c) Figure 3 shows a signal flow graph of a control system. Using Mason's gain formula determine the closed loop transfer function. (8 marks)

(d) Highlight three characteristics of an ideal operational amplifier (OP - AMP). (3 marks)

THIS IS THE LAST PRINTED PAGE.