Name	White has been a second	Index No
2601/102		Candidate's Signature
2602/102		
2603/102		Date
PHYSICAL SCIENCE,	MECHANICAL SCIENCE	
AND ELECTRICAL EN	CINEERING PRINCIPLES	

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING (POWER OPTION) (TELECOMMUNICATION OPTION) (INSTRUMENTATION OPTION) MODULE I

PHYSICAL SCIENCE, MECHANICAL SCIENCE AND ELECTRICAL ENGINEERING PRINCIPLES

3 hours

INSTRUCTIONS TO CANDIDATES

June/July 2015 Time: 3 hours

Write your name and index number in the spaces provided above.

Sign and write the date of the examination in the spaces provided above.

You should have mathematical tables/scientific calculator for this examination.

This paper consists of EIGHT questions in THREE sections; A, B and C.

Answer TWO questions from Section A, ONE question from Section B and TWO questions from

Section C in the spaces provided in this question paper.

All questions carry equal marks.

Maximum marks for each part of a question are as shown.

Do NOT remove any pages from this booklet.

Candidates should answer the questions in English.

Take $U^{\circ} = 4\pi \times 10^{-7} H/m$ and $\varepsilon^{\circ} = 8.85 \times 10^{-12} F/m$

For Examiner's Use Only

Question	1	2	3	4	5	6	7	8	TOTAL SCORE
Candidate's Score	75						8		v No

This paper consists of 20 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

© 2015 The Kenya National Examinations Council

Turn over

SECTION A: PHYSICAL SCIENCE

Answer TWO questions from this section.

1. (a) The table 1 shows some elements and electronic arrangement of their ions. (letters are not actual symbols of elements).

Elements	Ion	Ion electronic configuration	Atomic radius (mm)	ionic radius (mm)
P	P ²⁺	2.8.8	0.197	0.099
Q	Q-	2.8	0.072	0.136
R	R+	2.8.8	0.231	0.133
S	S ³⁺	2.8	0.143	0.050
T	T ²⁺	2.8.18	0.133	0.074
· U	U ²⁺	2.8	0.160	0.065
V	V ⁺	2.8	0.186	0.095
W	W ⁺	2.	0.156	0.060
X	Χ-	2.8.8	0.099	0.181

- (i) State the atomic number of elements P and S.
- (ii) Select the most reactive metallic element. Explain.
- (iii) Select three elements that would react with cold water.
- (iv) Identify three elements from same group 7 of the periodic table.
- (v) Write the chemical formula of a compound of S and oxygen, V and X.

(12 marks)

(b) Figure 2 shows a list of some simple members of a homologous series.

Formula	Physical state at room temperature
CH ₄	gas
C_2H_4	gas
C_3H_8	gas
C_4H_{10}	gas
C_5H_{12}	liquid
C_6H_{14}	liquid

- (i) Explain the term homologous series.
- (ii) State three characteristics of a homologous series.
- (iii) Explain the variation in physical state of members of homologous series.
- (iv) Draw and name isomers of C₄H₁₀.

(8 marks)

2. (a) State **two** uses of X-rays in medicine.

(2 marks)

(b) Figure 1 shows the features of an X-ray tube.

Fig. 1

- (i) name the parts labelled A, B and C;
- (ii) name the suitable material for he part labelled C;
- (iii) explain how X-rays are produced in this tube?
- (iv) why is it necessary to have oil cooling the anode;

(8 marks)

(c) The accelerating potential in certain X-ray tube is 15 kV. Determine the maximum frequency of the emitted X-rays.

Take: charge on an electron, e = 1.6×10^{-19} C, Plank's constant, h = 6.62×10^{-34} Js.

3

(3 marks)

Turn over

2601/102 , 2602/102 2603/102

(d) (i) Identify the possible radiations in each of the following nuclear reactions.

I
$$\frac{12}{6}$$
C $\rightarrow \frac{12}{6}$ C + radiation

II
$$\frac{228}{88}$$
Ra $\longrightarrow \frac{226}{86}$ Rn + radiation

III
$$\frac{14}{6}$$
C $\longrightarrow \frac{14}{7}$ V + radiation

(ii) A sample of a radioactive substance has 8.12×10^{20} atoms. The half-life of the substance is 21 minutes. Determine the number of atoms remaining undecayed after 84 minutes.

(7 marks)

- An immersion heater rated 2.5 kW is place in a liquid of frass 2 kg. When the heater is switched on for 5 minutes, the temperature of the liquid rises from 20 °C to 70 °C.

 Determine the specific heat capacity of the liquid. (4 marks)
 - (b) Define the term "specific latent heat of vaporization" of a substance. (2 marks)
 - (c) Figure 2 shows a simplified diagram of a domestic refrigerator. A volatile liquid circulates through the capillary tube under the action of compression pump.

Fig. 2

- (i) Give the reason why a volatile liquid is used.
- (ii) Explain how the volatile liquid is made to vaporize in the cooling compartment and condense in the cooling fins.
- (iii) Explain how cooling takes place in the refrigerator.
- (iv) Explain the purpose of the double wall.

(8 marks)

- (d) Steam of mass 4.0 g at 100 °C is passed into water of mass 450 g at 10 °C. The final temperature of the mixture rises to T °C, and the container carrying temperature absorbs negligible heat:
 - (i) derive an expression for he heat lost by the steam as it condensed to water at temperature T° C;
 - (ii) derive an expression for the heat gained by the water;
 - (iii) determine the value of T.

specific Latent heat of vaporization of steam specific heat capacity of water

= 2260 kJkg^{-1} ; = $41.00 \text{ Jkg}^{-1}\text{K}^{-1}$.

(6 marks)

SECTION B: MECHANICAL SCIENCE

Answer ONE question from this Section.

- 4. A pile driver of mass 300 kg is used to drive a pile of mass 500 kg vertically into the ground. The pile driver falls freely through a distance of 54.0 m, rebounding with a velocity relative to the pile and equal to the relative velocity immediately before impact. Determine:
 - (a) the velocity of the driver immediately before impact;

(4 marks)

(b) the velocity of he pile immediately after the impact;

(7 marks)

- (c) the depth of penetration of the pile after impact given that the ground resisting force is constant and equal to 115 kN; (4 marks)
- (d) the time taken for the penetration.

(5 marks)

2601/102, 2602/102 2603/102

Differentiate between a flywheel and a speed governor. 5. (a) (4 marks) Describe the following characteristics of governors: (b) (i) sensitivity; (ii) stability: (iii) isochronous. (6 marks) The following figures were obtained during a tensile test of mild steel: (c) Original diameter 12.5 mm Gauge length 200 mm Final length 257 mm Diameter at structure -7.85 mm Load at yield point 34575 N Maximum load 49023 N Determine; (i) tensile strength; (ii) stress at yield point; (iii) percentage reduction in area; (iv) percentage elongation. (10 marks)

SECTION C: ELECTRICAL ENGINEERING PRINCIPLES

Answer TWO question from this Section.

- 6. (a) State the meaning of each of the following;
 - (i) ohmic conductors;
 - (ii) electric power;
 - (iii) electrical energy.

(6 marks)

- (b) Two resistors are connected in series across a 24 V supply and a current of £A flour in the circuit If one of the resistors has a resistance of 2 Ω determine;
 - (i) the value of the other resistor;
 - (ii) the p.d across the 2 Ω resistor;
 - (iii) the amount of energy consumed if the circuit is connected for 50 hours.

(8 marks)

2601/102, 2602/102 2603/102 (c) Figure 3 shows a direct current circuit.

Fig. 3

Determine:

- (i) the battery voltage V and the total resistance of the circuit;
- (ii) the values of resistors R_1 , R_2 and R_3 given that the p.d across R_1 , R_2 and R_3 are 5 V, 2 V and 6 V respectively.

(6 marks)

- 7. (a) Name **five** quantities that a cathode ray oscilloscope is capable of measuring. (5 marks)
 - (b) State **three** other instruments which also measure various quantities. Indicate the quantities measured by each. (6 marks)
 - (c) Explain the principle of operation of a single phase transformer. (9 marks)
- 8. (a) (i) State three ways in which the capacitance of a capacitor can be varied.
 - (ii) Name **three** types of capacitors. (6 marks)
 - (b) A capacitor of 20 μ F charged to 500 V is connected in parallel with another of 10 μ F capacitance charged to 200 V. Determine the energy loss. (10 marks)
 - (c) Differentiate between permanent and temporary weights. (4 marks)