2506/103 2507/103 ENGINEERING MATHEMATICS I AND ENGINEERING SCIENCE I Oct./Nov. 2018 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL

DIPLOMA IN AERONAUTICAL ENGINEERING

(AIRFRAMES AND ENGINES OPTION) (AVIONICS OPTION)

MODULE I

ENGINEERING MATHEMATICS I AND ENGINEERING SCIENCE I

3 hours

INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Drawing instruments;

Mathematical tables/Non-programmable scientific calculator;

Answer booklet.

This paper consists of EIGHT questions in TWO sections; A and B.

Answer THREE questions from Section A and TWO questions from section B.

Maximum marks for each part of a question are as indicated.

Candidates should answer the questions in English.

(Take: g = 10 N/kg).

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

SECTION A: ENGINEERING MATHEMATICS I

Answer THREE questions from this section.

X. (a) Solve the equations:

(i)
$$2^{2x}-3(2^x)+2=0$$

(ii)
$$x^{3.2} = 41.15$$

correct to 4 significant figures.

(9 marks)

Solve the simultaneous equations: (b)

$$\frac{x-1}{3} + \frac{y+2}{5} = \frac{2}{15}$$

$$\frac{1-x}{6} + \frac{5+y}{2} = \frac{5}{6}$$

(6 marks)

Solve the equation $2x^2 + 5x = 3$ by completing the square. (c)

(5 marks)

Evaluate $\frac{3 \tan 60^{\circ} - 2 \cos 30^{\circ}}{\tan 30^{\circ}}$ without using tables or a calculator. (a)

(3 marks)

Solve the equation $1 + \cos \theta = 2\sin^2 \theta$ for $0^{\circ} \le \theta \le 360^{\circ}$. (b)

(6 marks)

- A triangle ABC has sides a = 9.0 cm, b = 7.5 cm and c = 6.5 cm. Determine the: (c)
 - magnitudes of the three angles; (i)
 - (ii) the area of the triangle.

(11 marks)

Express $\left(\frac{2+j}{3-2i}\right)^2$ in the form a+jb. (a)

(4 marks)

If $Pe^x + Qe^{-x} = 3\cosh x - 4\sinh x$, find the values of P and Q. (b)

(4 marks)

- Determine the middle term in the binomial expansion of $(3x+2y)^{10}$. (c) (i)
 - Find the first three terms of the binomial expansion of $\sqrt{1-x}$. Hence by (ii) substituting $x = \frac{1}{9}$, find the value of $\sqrt{8}$.

(12 marks)

3.

- 4. (a) Differentiate:
 - (i) $y = 5 \tan^3 2x$
 - (ii) $y = 5\sqrt{t} \ln 3t$

(9 marks)

- (b) Determine the stationary points of the function $f(x,y) = 2x^3 + 6xy^2 3y^3 150$. (11 marks)
- 5. (a) Evaluate the integrals:
 - (i) $\int 2x(2x^2+5)^6 dx$;
 - (ii) $\int \sin^3 x \cos^2 x \, dx;$
 - (iii) $\int x^5 \ln x \, dx.$

(15 marks)

(b) Find the area bounded above by y=3x+2, below by x-axis between x=1 and x=3. (5 marks)

SECTION B: ENGINEERING SCIENCE I

Answer TWO questions from this section.

- 6. (a) (i) Outline two types of electromagnetic waves.
 - (ii) Figure 1 shows a snapshot of a wave form in a string. The numbers in the diagram show the scale in centimetres. The speed of the wave is 10 m/s.

Determine the: (I) wavelength; (II) amptitude; (III) frequency; (IV) period of oscillation. (8 marks) (b) (i) Outline four forms of energy. (ii) Calculate the work done by a stone mason in lifting a stone of mass 15 kg through a height of 3.0 m. (8 marks) An electric motor raises a 50 kg load at a constant velocity. Calculate the power of the (c) motor if it takes 40 seconds to raise the load through a height of 24 m. (4 marks) 7. (a) (i) State the principle of moments. (ii) A uniform meter rule pivoted at its centre is balanced by a force of 9.6 N at the 20 cm mark and some other forces, P and 4.0 N on the 66 cm and 90 cm marks respectively. Calculate the force P. (10 marks) A wooden box of mass 50 kg rests on a rough floor. The coefficient of friction between (b) the floor and the box is 0.4 (i) Calculate the force required to just move the box. (ii) If a force of 120 N is applied to the box, determine its acceleration. (5 marks)

(c) A car of mass 2400 kg travelling at 90 m/s is brought to rest in 6 seconds. Calculate the:

(i) average retardation of the car;

(ii) average force applied by the brakes.

(5 marks)

- (a) A block and tackle pulley system is used to lift a mass of 200 kg. This machine has a velocity ratio of 5 and efficiency of 80%.
 - (i) Sketch a possible arrangement of the pulleys, showing how the rope is wound.
 - (ii) Calculate the effort applied.

(8 marks)

- (b) The volume V of a gas at pressure P is reduced to $\frac{2}{7}$ V without change of temperature.

 Determine the new pressure of the gas. (4 marks)
- (c) A certain mass of a gas occupies $220 \, cm^3$ at $18^{\circ}C$ and 740 mmHg pressure. Determine the temperature of the gas when it is compressed to a volume of $180 \, cm^3$ and pressure of 770 mmHg. (3 marks)
- (d) A model Aircraft engine-block alloy contains 50 kg of Iron and 5.0 kg of Aluminium. Calculate the heat capacity of the engine-block alloy.

Take:

specific heat capacity of Iron = 460 J/kgK; specific heat capacity of Aluminium = 880 J/kgK.

(5 marks)

THIS IS THE LAST PRINTED PAGE.